Mathematics, Statistics, and Physicshttp://hdl.handle.net/10057/1192017-11-19T08:47:30Z2017-11-19T08:47:30ZSearch for active-sterile neutrino mixing using neutral-current interactions in NOvAMeyer, HolgerMuether, MathewSolomey, Nickolashttp://hdl.handle.net/10057/142992017-11-16T23:02:27Z2017-10-30T00:00:00ZSearch for active-sterile neutrino mixing using neutral-current interactions in NOvA
Meyer, Holger; Muether, Mathew; Solomey, Nickolas
We report results from the first search for sterile neutrinos mixing with active neutrinos through a reduction in the rate of neutral-current interactions over a baseline of 810 km between the NOvA detectors. Analyzing a 14-kton detector equivalent exposure of 6.05 x 10(20) protons-on-target in the NuMI beam at Fermilab, we observe 95 neutral-current candidates at the Far Detector compared with 83.5 +/- 9.7(stat) +/- 9.4(syst) events predicted assuming mixing only occurs between active neutrino species. No evidence for upsilon(mu) -> upsilon(mu) transitions is found. Interpreting these results within a 3 + 1 model, we place constraints on the mixing angles theta(24) < 20.8 degrees and theta(34) < 31.2 degrees at the 90% C.L. for 0.05 eV(2) <= Delta m(41)(2) <= 0.5 eV(2), the range of mass splittings that produce no significant oscillations over the Near Detector baseline.
Click on the DOI link to access the article (may not be free). WSU authors: Meyer, Holger; Muether, Mathew; Solomey, Nickolas. The NOvA Collaboration includes: P. Adamson, L. Aliaga, D. Ambrose, N. Anfimov, A. Antoshkin, E. Arrieta-Diaz, K. Augsten, A. Aurisano, C. Backhouse, M. Baird, B. A. Bambah, K. Bays, B. Behera, S. Bending, R. Bernstein, V. Bhatnagar, B. Bhuyan, J. Bian, T. Blackburn, A. Bolshakova, C. Bromberg, J. Brown, G. Brunetti, N. Buchanan, A. Butkevich, V. Bychkov, M. Campbell, E. Catano-Mur, S. Childress, B. C. Choudhary, B. Chowdhury, T. E. Coan, J. A. B. Coelho, M. Colo, J. Cooper, L. Corwin, L. Cremonesi, D. Cronin-Hennessy, G. S. Davies, J. P. Davies, P. F. Derwent, R. Dharmapalan, P. Ding, Z. Djurcic, E. C. Dukes, H. Duyang, S. Edayath, R. Ehrlich, G. J. Feldman, M. J. Frank, M. Gabrielyan, H. R. Gallagher, S. Germani, T. Ghosh, A. Giri, R. A. Gomes, M. C. Goodman, V. Grichine, M. Groh, R. Group, D. Grover, B. Guo, A. Habig, J. Hartnell, R. Hatcher, A. Hatzikoutelis, K. Heller, A. Himmel, A. Holin, B. Howard, J. Hylen, F. Jediny, M. Judah, G. K. Kafka, D. Kalra, S. M. S. Kasahara, S. Kasetti, R. Keloth, L. Kolupaeva, S. Kotelnikov, I. Kourbanis, A. Kreymer, A. Kumar, S. Kurbanov, T. Lackey, K. Lang, W. M. Lee, S. Lin, M. Lokajicek, J. Lozier, S. Luchuk, K. Maan, S. Magill, W. A. Mann, M. L. Marshak, K. Matera, V. Matveev, D. P. Méndez, M. D. Messier, H. Meyer, T. Miao, W. H. Miller, S. R. Mishra, R. Mohanta, A. Moren, L. Mualem, M. Muether, S. Mufson, R. Murphy, J. Musser, J. K. Nelson, R. Nichol, E. Niner, A. Norman, T. Nosek, Y. Oksuzian, A. Olshevskiy, T. Olson, J. Paley, R. B. Patterson, G. Pawloski, D. Pershey, O. Petrova, R. Petti, S. Phan-Budd, R. K. Plunkett, R. Poling, B. Potukuchi, C. Principato, F. Psihas, A. Radovic, R. A. Rameika, B. Rebel, B. Reed, D. Rocco, P. Rojas, V. Ryabov, K. Sachdev, P. Sail, O. Samoylov, M. C. Sanchez, R. Schroeter, J. Sepulveda-Quiroz, P. Shanahan, A. Sheshukov, J. Singh, J. Singh, P. Singh, V. Singh, J. Smolik, N. Solomey, E. Song, A. Sousa, K. Soustruznik, M. Strait, L. Suter, R. L. Talaga, P. Tas, R. B. Thayyullathil, J. Thomas, X. Tian, S. C. Tognini, J. Tripathi, A. Tsaris, J. Urheim, P. Vahle, J. Vasel, L. Vinton, A. Vold, T. Vrba, B. Wang, M. Wetstein, D. Whittington, S. G. Wojcicki, J. Wolcott, N. Yadav, S. Yang, J. Zalesak, B. Zamorano, and R. Zwaska.
2017-10-30T00:00:00ZBinomial-chi(2) vector random fieldsMa, Chunshenghttp://hdl.handle.net/10057/141372017-10-23T01:10:06Z2017-01-01T00:00:00ZBinomial-chi(2) vector random fields
Ma, Chunsheng
We introduce a new class of non-Gaussian vector random fields in space and/or time, which are termed binomial-chi(2) vector random fields and include chi(2) vector random fields as special cases. We define a binomial-chi(2) vector random field as a binomial sum of squares of independent Gaussian vector random fields on a spatial, temporal, or spatio-temporal index domain. This is a second-order vector random field and has an interesting feature in that its finite-dimensional Laplace transforms are not determined by its own covariance matrix function, but rather by that of the underlying Gaussian one. We study the basic properties of binomial-chi(2) vector random fields and derive some direct/cross covariances, which are based on the bivariate normal density, distribution, and related functions, for elliptically contoured and binomial-chi(2) vector random fields.
Click on the DOI link to access the article (may not be free).
2017-01-01T00:00:00ZVector stochastic processes with Polya-Type correlation structureMa, Chunshenghttp://hdl.handle.net/10057/140852017-09-18T02:05:40Z2017-08-01T00:00:00ZVector stochastic processes with Polya-Type correlation structure
Ma, Chunsheng
This paper introduces a simple method to construct a stationary process on the real line with a Polya-type covariance function and with any infinitely divisible marginal distribution, by randomising the timescale of the increment of a second-order Levy process with an appropriate positive random variable. With the construction method extended to the multivariate case, we construct vector stochastic processes with Polya-type direct covariance functions and with any specified infinitely divisible marginal distributions. This makes available a new class of non-Gaussian vector stochastic processes with flexible correlation structure for use in modelling and simulation.
Click on the DOI link to access the article (may not be free).
2017-08-01T00:00:00ZOrientation and symmetries of Alexandrov spaces with applications in positive curvatureHarvey, JohnSearle, Catherinehttp://hdl.handle.net/10057/135252017-07-23T16:17:02Z2017-04-01T00:00:00ZOrientation and symmetries of Alexandrov spaces with applications in positive curvature
Harvey, John; Searle, Catherine
We develop two new tools for use in Alexandrov geometry: a theory of ramified orientable double covers and a particularly useful version of the Slice Theorem for actions of compact Lie groups. These tools are applied to the classification of compact, positively curved Alexandrov spaces with maximal symmetry rank.
Click on the DOI link to access the article (may not be free).
2017-04-01T00:00:00Z