The inherent high vulnerability of dopaminergic neurons toward mitochondrial toxins may contribute to the etiology of Parkinsons disease
Authors
Advisors
Issue Date
Type
Keywords
Citation
Abstract
Although the exact mechanism(s) of the degeneration of dopaminergic neurons in Parkinson's disease (PD) is not well understood, mitochondrial dysfunction is proposed to play a central role. This proposal is strongly strengthened by the findings that compromised mitochondrial functions and/or exposure to mitochondrial toxins such as rotenone, paraquat, or MPTP causes degeneration of the midbrain dopaminergic system and manifest symptoms similar to Parkinson's disease in primates and rodents (Goldman, 2014). In fact, the specific dopaminergic toxin MPTP is one of the most commonly used models in the mechanistic studies of environmental factors associated with the etiology of PD, particularly due to the availability of direct and unequivocal clinical and biochemical evidence from human and primate subjects.