Monte Carlo simulations of a space-based dark matter detector

Thumbnail Image
Issue Date
Embargo End Date
Tripathi, Shrey
Solomey, Nickolas

It has been well established that a large percentage of the material in the universe is in an undiscovered form; Dark Matter. Most of this material is gravitationally condensed together as galaxies and clusters of galaxies. Several terrestrial detectors focus on achieving direct detection of dark matter but run into backgrounds from different particles showering the Earth every second. This thesis provides an alternate method to direct dark matter detection by designing a cube-sat particle detector orbiting around the Sun reaching the orbit of Jupiter. The space-based detector incorporates several layers of veto-layer shielding along with a Bismuth-Germanate (BGO) crystal in the center acting as the main detector. The veto-layer shielding made up of silicon, further reduces other interactions seen by the BGO crystal. At the orbit of Jupiter, the neutrino background decreases by several orders of magnitude giving the detector an opportunistic position to detect Weakly Interacting Massive Particle (WIMP) interactions. This thesis presents results from Monte Carlo simulations of particle events visible to the detector. Geant4 is a geometry and tracking platform which is used for detector construction and to conduct these simulations. The output of these simulations is studied and analyzed to find detector sensitivity, rejection rates, background signals along with a WIMP signal as the primary objective.

Table of Content
Thesis (M.S.)-- Wichita State University, College of Liberal Arts and Sciences, Dept. of Mathematics, Statistics, and Physics