Developing electrospun fibers for hydrogen storage applications

Loading...
Thumbnail Image
Authors
Mohammed, Qamar Saberi
Advisors
Asmatulu, Eylem
Issue Date
2023-05
Type
Thesis
Keywords
Research Projects
Organizational Units
Journal Issue
Citation
Abstract

The primary objective of this research was to produce an electrospun nanofiber for the application of hydrogen storage, and the absorption kinetics of the highly porous nanocomposite fiber mats. One of the critical components of advancing hydrogen, and fuel cell technologies advancement is successfully storing hydrogen for use in various industries, like transportation, defense, compact gadgets, and energy. Hydrogen energy is the future because of its highest energy density, availability, and environmental and health benefits. Currently, enterprises are searching for a solution for energy distribution management and hydrogen gas storage. In this way, there is a need to develop a hydrogen storage innovation that might be considered for later use in aviation applications. It is being researched that functional nanocomposite fibers incorporated with hydrogen-sensitive inclusions will increase hydrogen storage capacity, and absorption/desorption kinetics of hydrogen gas at lower temperatures and pressures. Here, the electrospinning method has been used to produce polymeric nanofibers with different nanoscale metal hydrides, and conductive particles that can store hydrogen under a controlled environment, and enhance thermal properties. Selected polymeric materials for hydrogen storage that have been investigated are polyacrylonitrile (PAN), poly (methyl methacrylate) (PMMA), and sulfonated polyether ether ketone (SPEEK) in combination with metallic hydrides, and multi-walled carbon nanotubes. On testing, it was observed that hydrogen capacity with SPEEK, which includes 4% MWCNT and 4% MH (Mmni4.5Fe0.5) shows significant H2 uptake compared to PAN/PMMA polymer.

Table of Contents
Description
Thesis (M.S.)-- Wichita State University, College of Engineering, Dept. of Mechanical Engineering
Publisher
Wichita State University
Journal
Book Title
Series
PubMed ID
DOI
ISSN
EISSN