Protective effects of IL-1Ra or vIL-10 gene transfer on a murine model of wear debris-induced osteolysis

No Thumbnail Available
Authors
Yang, Shang-You
Wu, Bin
Mayton, Lois
Mukherjee, P.
Robbins, Paul D.
Evans, C.H.
Wooley, Paul H.
Advisors
Issue Date
2004-03
Type
Article
Keywords
Gene transfer , Wear debris , Inflammation , Bone resorption
Research Projects
Organizational Units
Journal Issue
Citation
S-Y Yang, B Wu, L Mayton, P Mukherjee, P D Robbins, C H Evans, P H Wooley; Protective effects of IL-1Ra or vIL-10 gene transfer on a murine model of wear debris-induced osteolysis; Gene Therapy (2004) 11, 483–491. doi:10.1038/sj.gt.3302192
Abstract

The current study evaluated the protective effects of anti-inflammatory cytokine gene transfer on osteolysis provoked by orthopedic biomaterial particles using a murine model of inflammatory bone loss. A section of bone was surgically implanted into an air pouch established on a syngeneic recipient mouse. Inflammation was provoked by introduction of ultra-high-molecular-weight polyethylene (UHMWPE) particles into the pouch, and retroviruses encoding for interleukin-1 receptor antagonist (hIL-1Ra), viral interleukin-10 (vIL-10), or LacZ genes were injected. Pouch fluid and tissue were harvested 7 days later for histological and molecular analyses. The results indicated that IL-1Ra or vIL-10 gene transfer significantly inhibited IL-1 and tumor necrosis factor (TNF) expression at both mRNA and protein levels. There were significantly lower mRNA expressions of calcitonin receptor and cathepsin K in RNA isolated from hIL-1Ra- or vIL-10-transduced pouches than LacZ-transduced and virus-free controls. Both anti-inflammatory cytokine gene transfers significantly reduced the mRNA expression of M-CSF (70–90%) and RANK (>65%) in comparison with LacZ- and virus-free controls. Histological examination showed that hIL-1Ra or vIL-10 gene transfer dramatically abolished UHMWPE-induced inflammatory cellular infiltration and bone pit erosion compared to LacZ-transduced and virus-free controls. Histochemical staining revealed significantly fewer osteoclast-like cells in samples treated with IL-1Ra or vIL-10 gene transfer. In addition, bone collagen content was markedly preserved in the groups with anti-inflammatory cytokine gene transfers compared with the other two groups. Overall, retrovirus-mediated hIL-1Ra or vIL-10 gene transfer effectively protected against UHMWPE-particle-induced bone resorption, probably due to the inhibition of IL-1/TNF-induced M-CSF production and the consequent osteoclast recruitment and maturation.

Table of Contents
Description
Click on the DOI link to access this article
Publisher
Nature Publishing Group
Journal
Book Title
Series
Gene Therapy;
;V.11,No.5
PubMed ID
DOI
ISSN
0969-7128
1476-5462 (Electronic)
EISSN