Effects of manufacturing defects on composite seat pans at static and dynamic strain rates
Authors
Advisors
Issue Date
Type
Keywords
Citation
Abstract
The use of composite materials in aircraft primary seat structures has increased and requires additional standards to maintain the current level of aircraft seat safety. The presence of manufacturing defects or service damage could undermine the load-carrying capabilities of these structures at dynamic loading rates. In the current work, the effects of out-of-plane fiber waviness/wrinkle on representative aircraft seatpans has been investigated. The seatpans are tested at both quasi-static and elevated strain rates. The performance of seatpans with defects is compared against pristine seatpans. All the experiments were conducted using a high-rate test frame and were supported with high-speed Digital Image Correlation (DIC). A comparison of load, displacement, strain, and strain rate at failure between different configurations is reported. © 2024 by Akhil Bhasin, NIAR AVET.

