Uncertainty of temperature measurements by infrared thermography for metal cutting applications

No Thumbnail Available
Issue Date
2013-12
Authors
Whitenton, Eric
Madhavan, Viswanathan
Donmez, Mehmet A.
Lane, Brandon
Advisor
Citation

Lane, Brandon; Whitenton, E.; Madhavan, Viswanathan; Donmez, A. 2013. Uncertainty of temperature measurements by infrared thermography for metal cutting applications. Metrologia, vol. 50:no. 6:ppg. 637-653

Abstract

This paper presents a comprehensive analysis of the uncertainty in the measurement of the peak temperature on the side face of a cutting tool, during the metal cutting process, by infrared thermography. The analysis considers the use of a commercial off-the-shelf camera and optics, typical of what is used in metal cutting research. A physics-based temperature measurement equation is considered and an analytical method is used to propagate the uncertainties associated with measurement variables to determine the overall temperature measurement uncertainty. A Monte Carlo simulation is used to expand on the analytical method by incorporating additional sources of uncertainty such as a point spread function (PSF) of the optics, difference in emissivity of the chip and tool, and motion blur. Further discussion is provided regarding the effect of sub-scenel averaging and magnification on the measured temperature values. It is shown that a typical maximum cutting tool temperature measurement results in an expanded uncertainty of U = 50.1 degrees C (k = 2). The most significant contributors to this uncertainty are found to be uncertainties in cutting tool emissivity and PSF of the imaging system.

Table of Content
Description
Click on the DOI link to access the article (may not be free).
publication.page.dc.relation.uri