Impact of level-2 cache sharing on the performance and power requirements of homogeneous multicore embedded systems

No Thumbnail Available
Authors
Asaduzzaman, Abu
Sibai, Fadi N.
Rani, Manira S.
Advisors
Issue Date
2009-08
Type
Article
Keywords
Cache memory hierarchy , Multicore architecture , Embedded system , Performance modeling , Power-aware design
Research Projects
Organizational Units
Journal Issue
Citation
Asaduzzaman, A., Sibai, F. N., & Rani, M. (2009). Impact of level-2 cache sharing on the performance and power requirements of homogeneous multicore embedded systems. Microprocessors and Microsystems, 33(5-6), 388-397. doi:10.1016/j.micpro.2009.06.001
Abstract

In order to satisfy the needs for increasing computer processing power, there are significant changes in the design process of modern computing systems. Major chip-vendors are deploying multicore or manycore processors to their product lines. Multicore architectures offer a tremendous amount of processing speed. At the same time, they bring challenges for embedded systems which suffer from limited resources. Various cache memory hierarchies have been proposed to satisfy the requirements for different embedded systems. Normally, a level-1 cache (CL1) memory is dedicated to each core. However, the level-2 cache (CL2) can be shared (like Intel Xeon and IBM Cell) or distributed (like AMD Athlon). In this paper, we investigate the impact of the CL2 organization type (shared Vs distributed) on the performance and power consumption of homogeneous multicore embedded systems. We use VisualSim and Heptane tools to model and simulate the target architectures running FFT, MI, and DFT applications. Experimental results show that by replacing a single-core system with an 8-core system, reductions in mean delay per core of 64% for distributed CL2 and 53% for shared CL2 are possible with little additional power (15% for distributed CL2 and 18% for shared CL2) for FFT. Results also reveal that the distributed CL2 hierarchy outperforms the shared CL2 hierarchy for all three applications considered and for other applications with similar code characteristics.

Table of Contents
Description
Click on the DOI link to access the article (may not be free).
Publisher
Elsevier
Journal
Book Title
Series
Microprocessors and Microsystems
v.33 no.5-6
PubMed ID
DOI
ISSN
0141-9331
1872-9436 (online)
EISSN
Collections