Structural-material-operational performance relationship for pool boiling on enhanced surfaces using deep neural network model

No Thumbnail Available
Authors
Mehdi, Sadaf
Nannapaneni, Saideep
Hwang, Gisuk
Advisors
Issue Date
2022-12-01
Type
Article
Keywords
Heat transfer coefficient , Reentrant cavity , Machine learning
Research Projects
Organizational Units
Journal Issue
Citation
Mehdi, S., Nannapaneni, S., & Hwang, G. (2022). Structural-material-operational performance relationship for pool boiling on enhanced surfaces using deep neural network model. International Journal of Heat and Mass Transfer, 198, 123395. https://doi.org/https://doi.org/10.1016/j.ijheatmasstransfer.2022.123395
Abstract

An accurate predictive model of the enhanced pool boiling heat transfer on various surface modifications is essential to operate the pool boiling and design the optimal surface designs. However, the existing predictive models generally predict the enhanced pool boiling heat transfer on various surfaces with very large errors as high as ±50%, mainly due to the complex nature of the pool boiling processes. In this study, we unlock the complex relations among four geometrical, nine thermophysical properties, and two operational conditions to accurately predict the Heat Transfer Coefficient (HTC) on the enhanced surfaces using an optimized Deep Neural Network (DNN) model. The six dimensionless numbers are identified based on geometries, operation conditions, and thermophysical properties, which are used as input parameters for the DNN model for the first time. This results in the Mean Absolute Percentage Error (MAPE) below 5%, compared to the existing empirical correlations having 5.04–45.37% MAPE on the selected 1256 data points. Also, the developed DNN model outperforms the prediction accuracy of the existing correlation for the data in much different experimental conditions, showing the 20% MAPE for the pre-trained DNN model (without additional training) and 38% MAPE for the existing correlation. Moreover, the sensitivity analysis was performed to identify the key dimensionless parameters for the HTC on the enhanced surfaces. The developed DNN model with the dimensionless parameters shed light on understanding the complex pool boiling process on the enhanced surfaces.

Table of Contents
Description
Click on the DOI to access this article (may not be free).
Publisher
Elsevier Ltd
Journal
Book Title
Series
International Journal of Heat and Mass Transfer
Volume 198
PubMed ID
DOI
ISSN
0017-9310
EISSN