QoS-aware adaptive routing in multi-layer hierarchical software defined networks: a reinforcement learning approach

No Thumbnail Available
Issue Date
Lin, Shih-Chun
Akyildiz, Ian F.
Wang, Pu
Luo, Min

S. C. Lin, I. F. Akyildiz, P. Wang and M. Luo, "QoS-Aware Adaptive Routing in Multi-layer Hierarchical Software Defined Networks: A Reinforcement Learning Approach," 2016 IEEE International Conference on Services Computing (SCC), San Francisco, CA, 2016, pp. 25-33


Software-defined networks (SDNs) have been recognized as the next-generation networking paradigm that decouples the data forwarding from the centralized control. To realize the merits of dedicated QoS provisioning and fast route (re) configuration services over the decoupled SDNs, various QoS requirements in packet delay, loss, and throughput should be supported by an efficient transportation with respect to each specific application. In this paper, a QoS-aware adaptive routing (QAR) is proposed in the designed multi-layer hierarchical SDNs. Specifically, the distributed hierarchical control plane architecture is employed to minimize signaling delay in large SDNs via three-levels design of controllers, i.e., the super, domain (or master), and slave controllers. Furthermore, QAR algorithm is proposed with the aid of reinforcement learning and QoS-aware reward function, achieving a time-efficient, adaptive, QoS-provisioning packet forwarding. Simulation results confirm that QAR outperforms the existing learning solution and provides fast convergence with QoS provisioning, facilitating the practical implementations in large-scale software service-defined networks.

Table of Content
Click on the URL to access the article (may not be free).