Demand side management for residential consumers considering distribution system requirements

Loading...
Thumbnail Image
Authors
Gomes, Thanappuhettige Nipuna Mihiranga
Advisors
Aravinthan, Visvakumar
Issue Date
2017-12
Type
Thesis
Keywords
Research Projects
Organizational Units
Journal Issue
Citation
Abstract

One of the focus areas of the smart-grid initiative is residential level demand response. Literature presents numerous demand response and load control programs. Some of the recent surveys analyze price-responsive demand response optimization, mathematical modeling of demand response, responsive demand forecasting, and communication requirements. Minimal work is done to evaluate and incorporate the impact of such programs on the grid. The real-time demand response program should benefit both utility and the consumers in an optimized manner. Most demand response schemes in the literature fail to identify the benefit to the distribution system. Only a few of publications in the literature indicate that the proposed demand response programs could benefit the utility. Of that, only a handful of work shows and verifies the actual benefits. One of the works, which evaluated the grid impact, focuses on individual appliances and their contribution to voltage drop mitigation. Regardless of the benefit to the consumers, the utility will not be interested in those programs if they do not provide a considerable benefit to them. This has limited the distribution system operators from identifying the worth of demand response and launch programs which are beneficial to both consumers and distribution operators. This thesis addresses the value of demand response programs to the grid. The first part of this thesis identifies the benefit of the demand response programs available in the literature. Next, the thesis presents an approach to incorporate utility focused demand response benefits into distribution system operation. This is done by maintaining distribution level requirements such as minimal deviations in nodal voltage and power factor. A modified AC distribution power-flow method is proposed along with the demand response as a constraint. The demand response constraint is developed using the first part. The outcome of this work can be used by utilities to evaluate the benefits of demand response programs

Table of Contents
Description
Thesis (M.S.)--Wichita State University, College of Engineering, Dept. of Electrical Engineering and Computer Science
Publisher
Wichita State University
Journal
Book Title
Series
PubMed ID
DOI
ISSN
EISSN