Pulsed ferrite magnetic field generator for through-the-earth communication systems for disaster situation in mines

No Thumbnail Available
Authors
Bae, Seok
Hong, Yang-Ki
Lee, Jaejin
Park, Jihoon
Jalli, Jeevan
Abo, Gavin S.
Kwon, Hyuck M.
Jayasooriya, Chandana K. K.
Advisors
Issue Date
2013-03
Type
Article
Keywords
Ferrite helical loop antenna , Through-the-earth (TTE) communication , Ferrite magnetic field generator (FMFG) , Disaster in mine
Research Projects
Organizational Units
Journal Issue
Citation
Bae, Seok; Hong, Yang-Ki; Lee, Jaejin; Park, Jihoon; Jalli, Jeevan; Abo, Gavin S.; Kwon, Hyuck M.; Jayasooriya, Chandana K. K. 2013. Pulsed Ferrite Magnetic Field Generator for Through-the-earth Communication Systems for Disaster Situation in Mines. Journal of Magnetics, v.18 no.1 pp.43-49
Abstract

A pulsed ferrite magnetic field generator (FMFG) was designed for the use in the 1000 m long through-theearth (TTE) communication system for mining disaster situations. To miniaturize the TTE system, a ferrite core having 10,000 of permeability was used for the FMFG. Attenuation of the magnetic field intensity from the FMFG (200-turn and 0.18 m diameter) was calculated to be 89.95 dB at 1000 m depth soil having 0.1 S/m of conductivity. This attenuation was lower than 151.13 dB attenuation of 1 kHz electromagnetic wave at the same conditions. Therefore, the magnetic-field was found to be desirable as a signal carrier source for TTE communications as compared to the electromagnetic wave. The designed FMFG generates the magnetic field intensity of 1 × 10−10 Tesla at 1000 m depth. This magnetic field is detectable by compact magnetic sensors such as flux gate or magnetic tunneling junction sensor. Therefore, the miniature FMFG TTE communication system can replace the conventional electromagnetic wave carrier type TTE system and allow reliable signal transmission between rescuer and trapped miners.

Table of Contents
Description
Click on the link to access the article at the publisher's website.
Publisher
Korean Magnetics Society
Journal
Book Title
Series
Journal of Magnetics;v.18 no.1
PubMed ID
DOI
ISSN
2233-6656
EISSN