Recovery of impact-damaged carbon fiber–reinforced composites using induction heating

No Thumbnail Available
Authors
Bayazeid, Sultan M.
Poon, Kim Leng
Subeshan, Balakrishnan
Alamir, Mohammed Abdullah
Asmatulu, Eylem
Advisors
Issue Date
2021-12-09
Type
Article
Keywords
Carbon fiber–reinforced composites , Impact damage , Induction heating , Damage recovery , Aerospace
Research Projects
Organizational Units
Journal Issue
Citation
Bayazeid, S. M., Poon, K.-L., Subeshan, B., Alamir, M., & Asmatulu, E. (2021). Recovery of impact-damaged carbon fiber–reinforced composites using induction heating. Journal of Composite Materials. https://doi.org/10.1177/00219983211058796
Abstract

Carbon fiber–reinforced composites (CFRCs) have been used extensively in structural applications within the aerospace and automotive manufacturing industries. However, several other applications have been recognized. These take advantage of the additional properties of CFRCs, which lead to providing better performance for structures. However, in their service environment, these CFRCs are inevitably susceptible to impact damage from multiple sources, and they must be able to recover from impacts to meet structural requirements. This study directs an experimental investigation of using induction heating (IH) for an impact-damaged CFRC. Here, IH process parameters, including the effects of electromagnetic frequency and generator power on the recovery of impact-damaged CFRC, have been analyzed. The anisotropic conductivity characteristics and the relationship between the drop-weight impact depth and conductivity of CFRC garnered much attention. This paper also offers the electromagnetic properties of CFRC for various applications. In this study, CFRC cured samples were obtained from Cetex® TC1200 PEEK, AS4 145 gsm, 16 unidirectional plies. Three variants of CFRC samples were tested: undamaged samples; samples with impact damage introduced in the center by a drop-weight impact test, according to the ASTM D7136/7136M standard; and samples with drop-weight impact damage recovered using the IH system. This work presents the results of the tensile strength of CFRC samples to assess the comparison of undamaged samples, samples damaged after the drop-weight impact test, and samples recovered after the drop-weight impact test. IH is appropriate for the recovery of impact-damaged CFRC samples, aiding in the conversion of electromagnetic energy to heat in order to generate mechanisms on components to recover the impact-damaged CFRC samples. Experimental results show that the impact-damaged area of the recovered CFRC samples is 37.0% less than that of damaged CFRC samples, and tensile strength results also improved after the impact-damaged CFRC samples were recovered. These results show that the IH method can effectively improve the impact damage performance of CFRC. The outcome of this study is promising for use in many applications, especially in the aerospace and automotive industries.

Table of Contents
Description
Click on the DOI link to access the article (may not be free).
Publisher
SAGE Publications
Journal
Book Title
Series
Journal of Composite Materials;
PubMed ID
DOI
ISSN
0021-9983
1530-793X
EISSN