Investigating the mechanical and biological properties of nanoparticles-infused thermosensitive chitosan hydrogels for targeted drug delivery

Loading...
Thumbnail Image
Authors
Saeednia, Leyla
Advisors
Asmatulu, Ramazan
Yao, Li
Issue Date
2016-05
Type
Dissertation
Keywords
Research Projects
Organizational Units
Journal Issue
Citation
Abstract

Targeted drug delivery systems (DDSs) have been widely studied in cancer therapy using various chemotherapy drugs. Due to the toxicity of these cancer drugs, it is desired to target them into the tumor site, hence increasing their efficiency and decreasing their overall side effects. Injectable thermosensitive hydrogels are liquid at lower temperatures before administering them, but they form a gel when the temperature is increased from room temperature (21°C) to body temperature (37°C) and are considered to be a promising drug delivery system. Chitosan (CH) is a natural polysaccharide that has gained a great deal of interest for various biomedical applications, and it has the capability of making thermosensitive hydrogels when mixed with β-glycerophosphate (β-GP). Nanotechnology has received significant attention in biomedical applications, such as drug delivery. Carbon-based materials have the advantage of being more environmentally and biologically friendly than inorganic materials. In this study, three types of carbon-based nanoparticles—carbon nanotubes (CNTs), fullerene (F), and graphene (G)—were used to make CH-based thermosensitive nanohybrid hydrogels, which were analyzed mechanically, chemically, and biologically in order to evaluate their potential in drug delivery applications, especially cancer treatment. Structural results confirmed the formation of physical thermosensitive hybrid hydrogels. The cell viability of nanoparticle-infused hydrogels were found to be between 80% and 100%. Swelling and degradation behavior were also investigated and found to be improved with the addition of nanoparticles. The release behavior of methotrexate as a sample anticancer drug showed a slower release behavior in nanohybrid hydrogels. The nanohybrid hydrogels were found to have effective anti-tumor effect on cancer cells in vitro.

Table of Contents
Description
Thesis (Ph.D.)-- Wichita State University, College of Engineering, Dept. of Mechanical Engineering
Publisher
Wichita State University
Journal
Book Title
Series
PubMed ID
DOI
ISSN
EISSN