A multi-system chaotic path planner for fast and unpredictable online coverage of terrains

No Thumbnail Available
Authors
Sridharan, Karan
Nili Ahmadabadi, Zahra
Advisors
Issue Date
2020-07-07
Type
Article
Keywords
Autonomous agents , Motion and path planning , Surveillance systems
Research Projects
Organizational Units
Journal Issue
Citation
K. Sridharan and Z. Nili Ahmadabadi, "A Multi-System Chaotic Path Planner for Fast and Unpredictable Online Coverage of Terrains," in IEEE Robotics and Automation Letters, vol. 5, no. 4, pp. 5268-5275, Oct. 2020
Abstract

Coverage path planning (CPP) algorithms customize an autonomous robot's trajectory for various applications. In surveillance and exploration of unknown environments, random CPP can be very effective in searching and finding objects of interest. Robots with random-like search algorithms must be unpredictable in their motion and simultaneously scan an uncertain environment, avoiding intruders and obstacles in their path. Inducing chaos into the robot's controller system makes its navigation unpredictable, accounts for better scanning coverage, and avoids any hurdles (obstacles and intruders) without the need for a map of the environment. The unpredictability, however, will come at the cost of increased coverage time. Due to the associated challenges, previous studies have ignored the coverage time and focused instead on the coverage rate only. This letter establishes a novel method that addresses the coverage time challenge of chaotic path planners. The method here combines the properties of two chaotic systems and manipulates them to achieve a fast coverage of the environment. The outcome has been a technique that can fully cover an area in at least 81% less time compared to state-of-the-art methods.

Table of Contents
Description
Click on the DOI link to access the article (may not be free).
Publisher
IEEE
Journal
Book Title
Series
IEEE Robotics and Automation Letters;v.5:no.4
PubMed ID
DOI
ISSN
2377-3766
EISSN