On the existence of convex classical solutions to a generalized Prandtl-Batchelor free boundary problem

dc.contributor.authorAcker, Andrew
dc.date.accessioned2012-08-15T20:55:22Z
dc.date.available2012-08-15T20:55:22Z
dc.date.issued2004
dc.descriptionClick on the DOI link to access this article (may not be free)en_US
dc.description.abstractUnder reasonably general assumptions, we prove the existence of convex classical solutions for the Prandtl-Batchelor free boundary problem in fluid dynamics, in which a flow of constant vorticity density is embedded in a potential flow, with a vortex sheet of constant vorticity density as the flow interface. These results apply to Batchelor flows which are con ned to a bounded, convex vessel, and for which the limiting interior flow-speed exceeds the limiting exterior flow-speed along the interface.en_US
dc.description.versionPeer reviewed
dc.identifier.citationAcker, A. (1998). "On the existence of convex classical solutions to a generalized Prandtl-Batchelor free boundary problem." Zeitschrift für Angewandte Mathematik und Physik (ZAMP) 49(1): 1-30.en_US
dc.identifier.issn0044-2275
dc.identifier.urihttp://hdl.handle.net/10057/5262
dc.identifier.urihttp://dx.doi.org/10.1007/s000330050080
dc.language.isoen_USen_US
dc.publisherBirkhäuser Verlag, Baselen_US
dc.relation.ispartofseriesZeitschrift für Angewandte Mathematik und Physik (ZAMP);v.49 no.1
dc.rights.holderCopyright 1998 Birkhäuser Verlag, Basel
dc.titleOn the existence of convex classical solutions to a generalized Prandtl-Batchelor free boundary problemen_US
dc.typeArticleen_US
Files