Feeder voltage control in the presence of distributed generation

Thumbnail Image
Issue Date
Embargo End Date
Deshmukh, Aasheesh
Aravinthan, Visvakumar

Although integration of distributed generation (DG) with distribution system has many advantages, at the same time there are many challenges to be faced. One of the major challenges is voltage regulation. In traditional distribution system without distributed generation, step voltage regulators and capacitor banks are used to regulate voltage to maintain node voltages under required limits. When distributed generation is added to the distribution system, controlling node voltages will be a challenging task especially due to variable and uncontrolled nature of output of distributed generators. This thesis work studies the effects of distributed generation on voltage drop and node voltages, using Institute of Electrical and Electronics Engineers (IEEE) 13-node test feeder. Based on simulation results, reduction in voltage drop and rise of node voltages are identified. With the presence of communication based control of distributed generators, voltage regulation can be done more efficiently. Therefore, this work focuses on developing a model to show the relationship between voltage drop and real and reactive powers, and developing a voltage optimization technique where real and reactive powers of distributed generators are controlled. The proposed technique is tested using IEEE 13-node test feeder and the results show that the proposed technique will control the feeder voltage under prescribed limits and minimize total voltage drop, real and reactive power losses.

Table of Content
Thesis (M.S.)--Wichita State University, College of Engineering, Dept. of Electrical Engineering and Computer Science