Supramolecular triad and pentad composed of zinc-porphyrin(s), oxoporphyrinogen, and fullerene(s): design and electron-transfer studies

No Thumbnail Available
Authors
Schumacher, Amy Lea
Sandanayaka, Atula S. D.
Hill, Jonathan P.
Ariga, Katsuhiko
Karr, Paul A.
Araki, Yasuyaki
Ito, Osamu
D'Souza, Francis
Issue Date
2007-01-01
Type
Article
Language
eng
Keywords
Research Support, Non-U.S. Gov't , Research Support, U.S. Gov't, Non-P.H.S.
Research Projects
Organizational Units
Journal Issue
Alternative Title
Abstract

By adopting a "covalent-coordinate" bonding approach, novel supramolecular pentad and triad molecules composed of zinc-porphyrin(s), fullerene(s), and oxoporphyrinogen redox-/photoactive entities have been constructed, and also characterized by means of spectral and electrochemical techniques. The geometry and electronic structures of the pentad and the triad were deduced by means of DFT calculations. Free-energy calculations suggested that the photoinduced electron/energy transfer from the zinc-porphyrin (ZnP) singlet-excited state to the imidazole modified fullerene (ImC(60)) acceptor and oxoporphyrinogen (OxP) entities is feasible for both the triad and the pentad. The charge-separation rates (k(CS)) determined from picosecond time-resolved emission studies were higher for pentad (C(60)Im:ZnP)(2)-OxP than for the corresponding triad, C(60)Im:ZnP-OxP. A comparison of the k(CS) values previously reported for the covalently linked bis(zinc-porphyrin)-oxoporphyrinogen triad suggests that employing a fullerene acceptor improves the electron-transfer rates. Nanosecond transient absorption studies provide evidence for the occurrence of electron-transfer processes. Lifetimes of the radical ion pairs (tau(RIP)) are in the range of hundreds of nanoseconds, which indicates that there is charge stabilization in the supramolecular systems.

Description
Click on the DOI link below to access the article (may not be free).
Citation
Chemistry (Weinheim an der Bergstrasse, Germany). 2007; 13(16): 4628-35.
Publisher
John Wiley and Sons
License
Journal
Volume
Issue
PubMed ID
DOI
ISSN
0947-6539
EISSN