Fischer-Tropsch synthesis: Effect of ammonia in syngas on the Fischer-Tropsch synthesis performance of a precipitated iron catalyst
Authors
Advisors
Issue Date
Type
Keywords
Citation
Abstract
The effect of ammonia in syngas on the Fischer-Tropsch synthesis (FTS) reaction over 100Fe/5.1Si/2.0Cu/3.0K catalyst was studied at 220-270 degrees C and 1.3 MPa using a 1-L slurry phase reactor. The ammonia added in syngas originated from adding ammonia gas, ammonium hydroxide solution, or ammonium nitrate (AN) solution. A wide range of ammonia concentrations (i.e., 0.1-400 ppm) was examined for several hundred hours. The Fe catalysts withdrawn at different times (i.e., after activation by carburization in CO, before and after co-feeding contaminants, and at the end of run) were characterized by ICP-OES, XRD, Mossbauer spectroscopy, and synchrotron methods (e.g., XANES, EXAFS) in order to explore possible changes in the chemical structure and phases of the Fe catalyst with time; in this way, the deactivation mechanism of the Fe catalyst by poisoning could be assessed. Adding up to 200 ppmw (wt. NH3/av. Wt. feed) ammonia in syngas did not significantly deactivate the Fe catalyst or alter selectivities toward CH4, C5+, CO2, C-4-olefin, and 1-C-4 olefin, but increasing the ammonia level (in the AN form) to 400 ppm rapidly deactivated the Fe catalyst and simultaneously changed the product selectivities. The results of ICP-OES, XRD, and Mossbauer spectroscopy did not display any evidence for the retention of a nitrogen-containing compound on the used catalyst that could explain the deactivation (e.g., adsorption, site blocking). Instead, Mossbauer spectroscopy results revealed that a significant fraction of iron carbides transformed into iron magnetite during co-feeding high concentrations of AN, suggesting that oxidation of iron carbides occurred and served as a major deactivation path in that case. Oxidation of chi-Fe5C2 to magnetite during co-feeding high concentrations of AN was further confirmed by XRD analysis and by the application of synchrotron methods (e.g., XANES, EXAFS). It is postulated that AN oxidized chi-Fe5C2 during FTS via its thermal dissociation product, HNO3. This conclusion is further supported by reaction tests with co-feeding of similar concentrations of HNO3. Additional oxidation routes of iron carbide to magnetite by HNO3 and/or by its thermal decomposition products are also considered: Fe5C2 + NOx (and/or HNO3) -> Fe3O4. In this study, ion chromatography detected that 50-80% HNO3 directly added or dissociated from AN eventually converted to ammonia during or after its oxidation of iron carbide, resulting from the reduction of NOx (NOx + H-2 + CO -> NH3 + CO2 + N-2 + H2O) by H-2 and/or CO.