Influence of a 4-aminomethylbenzoic acid residue on competitive fragmentation pathways during collision-induced dissociation of metal-cationized peptides

No Thumbnail Available
Authors
Osburn, Sandra M.
Ochola, Sila O.
Talaty, Erach R.
Van Stipdonk, Michael J.
Advisors
Issue Date
2007-01-01
Type
Article
Keywords
Research Support, Non-U.S. Gov't , Research Support, U.S. Gov't, Non-P.H.S.
Research Projects
Organizational Units
Journal Issue
Citation
Rapid communications in mass spectrometry : RCM. 2007; 21(21): 3409-19.
Abstract

Formation of [bn+17+cat]+ is a prominent collision-induced dissociation (CID) pathway for Li+- and Na+-cationized peptides. Dissociation of protonated and Ag+-cationized peptides instead favors formation of the rival bn+/[bn-1+cat]+ species. In this study the influence of a 4-aminomethylbenzoic acid (4AMBz) residue on the relative intensities of [b(3)-1+cat]+ and [b(3)+17+cat]+ fragment ions was investigated using several model tetrapeptides including those with the general formula A(4AMBz)AX and A(4AMBz)GX (where X=G, A, V). For Li+- and Na+-cationized versions of the peptides there was a significant increase in the intensity of [b(3)-1+cat]+ for the peptides that contain the 4AMBz residue, and in some cases the complete elimination of the [b(3)+17+cat]+ pathway. The influence of the 4AMBz residue may be attributed to the fact that [b(3)-1+cat]+ would be a highly conjugated species containing an aromatic ring substituent. Comparison of CID profiles generated from Na+-cationized AAGV and A(4AMBz)GV suggests an apparent decrease in the critical energy for generation of [b(3)-1+Na]+ relative to that of [b(3)+17+Na]+ when the aromatic amino acid occupies a position such that it leads to the formation of the highly conjugated oxazolinone, thus leading to an increase in formation rate for the former compared to the latter.

Table of Contents
Description
Click on the DOI link below to access the article (may not be free).
Publisher
John Wiley and Sons
Journal
Book Title
Series
Rapid communications in mass spectrometry : RCM
Rapid Commun. Mass Spectrom.
PubMed ID
DOI
ISSN
0951-4198
EISSN