Online aerodynamic parameter estimation for a fault tolerant flight control system

dc.contributor.advisorSteck, James E.en_US
dc.contributor.authorSingh, Balbahadur
dc.date.accessioned2007-08-21T13:30:04Z
dc.date.available2007-08-21T13:30:04Z
dc.date.issued2005-12
dc.descriptionThesis (M.S.)--Wichita State University, College of Engineering, Dept. of Aerospace Engineering.en
dc.description"December 2005."en
dc.description.abstractWichita State University (WSU) and Raytheon Aircraft Company are working toward the development of a flight control system to reduce the workload for a pilot under normal as well as deteriorated flight conditions. An ’easy fly system’ for a Bonanza Raytheon NASA test-bed has been used by WSU to develop a neural network-based adaptive flight control system. In this thesis an online technique for aerodynamic parameter estimation is presented, which is developed to improve the adaptation. The neural-based adaptive flight controller uses an artificial neural network for immediate adaptation in dynamic inverse control to compensate for modeling error or control failure. Long-term adaptation to modeling error requires a permanent correction of the aerodynamic parameters used in the inverse controller. This method is designed to update parameters inside the controller and to provide slow and long-term adaptation to compliment the existing immediate adaptation provided by neural networks. The method employs gradient descent optimization, guided by the modeling error for updating each parameter. It also uses the linearized equations of motion where the aerodynamic forces are represented by their coefficients and derivatives. Some convergence enhancement techniques are also used to reduce the time required for parameter identification. (Abstract shortened by UMI.)en
dc.format.extent1049327 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.isbn9780542757938
dc.identifier.othert05008
dc.identifier.otherAAT 1436581:UMI
dc.identifier.urihttp://hdl.handle.net/10057/739
dc.language.isoen_USen
dc.rightsCopyright Balbahadur Singh, 2005. All rights reserved.en
dc.subject.lcshElectronic dissertationsen
dc.titleOnline aerodynamic parameter estimation for a fault tolerant flight control systemen
dc.typeThesisen
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
t05008.pdf
Size:
903.55 KB
Format:
Adobe Portable Document Format
Description:
Thesis
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.7 KB
Format:
Item-specific license agreed upon to submission
Description: