Improved maximum inner product search with better theoretical guarantees

No Thumbnail Available
Authors
Keivani, Omid
Sinha, Kaushik
Ram, Parikshit
Advisors
Issue Date
2017-05
Type
Conference paper
Keywords
Maximum inner product search , Nearest neighbor search , Locality sensitive hashing , Randomized partition trees
Research Projects
Organizational Units
Journal Issue
Citation
Keivani, Omid; Sinha, Kaushik; Ram, Parikshit. 2017. Improved maximum inner product search with better theoretical guarantees. 2017 International Joint Conference on Neural Networks (IJCNN), pp 2927-2934
Abstract

Recent interest in the problem of maximum inner product search (MIPS) has sparked the development of new solutions. The solutions (usually) reduce MIPS to the well-studied problem of nearest-neighbour search (NNS). To escape the curse of dimensionality, the problem is relaxed to accept approximate solutions (that is, accept anything that is approximately maximum), and locality sensitive hashing is the approximate NNS algorithm of choice. While being extremely resourceful, these existing solutions have a couple of aspects that can be improved upon - (i) MIPS can be reduced to NNS in multiple ways and there is lack of understanding (mostly theoretical but also empirical) when to choose which reduction for best accuracy or efficiency, and (ii) when MIPS is solved via approximate NNS, translating this approximation to the MIPS solution is not straightforward. To overcome these usability issues, we propose the use of randomized partition trees (RPTs) for solving MIPS. We still reduce MIPS to NNS but utilize RPTs to solve the NNS problem. RPTs find the exact NNS solution, hence the exact MIPS solution (with high probability), avoiding the need for any translation of approximation. The theoretical properties of RPTs allow us to definitively choose the best MIPS-to-NNS reduction. The empirical properties of RPTs allow us to significantly outperform the state-of-the-art while providing unique fine-grained control over the accuracy-efficiency tradeoff. For example, at 80% accuracy, RPTs are 2-5× more efficient than the state-of-the-art.

Table of Contents
Description
Click on the DOI link to access the article (may not be free).
Publisher
IEEE
Journal
Book Title
Series
2017 International Joint Conference on Neural Networks (IJCNN);
PubMed ID
DOI
ISSN
2161-4393
EISSN