Fruit-fly inspired neighborhood encoding for classification

No Thumbnail Available
Issue Date
2021-08-14
Authors
Sinha, Kaushik
Ram, Parikshit
Advisor
Citation

Sinha, K., & Ram, P. (2021). Fruit-fly inspired neighborhood encoding for classification. Paper presented at the Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 1470-1480. doi:10.1145/3447548.3467246

Abstract

Inspired by the fruit-fly olfactory circuit, the Fly Bloom Filter [4] is able to efficiently summarize the data with a single pass and has been used for novelty detection. We propose a new classifier that effectively encodes the different local neighborhoods for each class with a per-class Fly Bloom Filter. The inference on test data requires an efficient FlyHash [6] operation followed by a high-dimensional, but very sparse, dot product with the per-class Bloom Filters. On the theoretical side, we establish conditions under which the predictions of our proposed classifier agrees with the predictions of the nearest neighbor classifier. We extensively evaluate our proposed scheme with 71 data sets of varied data dimensionality to demonstrate that the predictive performance of our proposed neuroscience inspired classifier is competitive to the nearest-neighbor classifiers and other single-pass classifiers.

Table of Content
Description
Click on the DOI link to access this conference paper at the publishers website (may not be free).
publication.page.dc.relation.uri