On the relationship of continuity and boundary regularity in prescribed mean curvature dirichlet problems

No Thumbnail Available
Authors
Lancaster, Kirk E.
Melin, Jaron Patric
Advisors
Issue Date
2016-03-03
Type
Article
Keywords
Prescribed mean curvature , Nonconvex corner , Dirichlet problem
Research Projects
Organizational Units
Journal Issue
Citation
Lancaster, Kirk E.; Melin, Jaron Patric. 2016. On the relationship of continuity and boundary regularity in prescribed mean curvature dirichlet problems. Pacific Journal of Mathematics, vol. 282:No. 2:pp 415–436
Abstract

In 1976, Leon Simon showed that if a compact subset of the boundary of a domain is smooth and has negative mean curvature, then the nonparametric least area problem with Lipschitz continuous Dirichlet boundary data has a generalized solution which is continuous on the union of the domain and this compact subset of the boundary, even if the generalized solution does not take on the prescribed boundary data. Simon's result has been extended to boundary value problems for prescribed mean curvature equations by other authors. In this note, we construct Dirichlet problems in domains with corners and demonstrate that the variational solutions of these Dirichlet problems are discontinuous at the corner, showing that Simon's assumption of regularity of the boundary of the domain is essential.

Table of Contents
Description
Click on the DOI link to access the article (may not be free).
Publisher
Pacific Journal of Mathematics
Journal
Book Title
Series
Pacific Journal of Mathematics;vol.282:no.2
PubMed ID
DOI
ISSN
0030-8730
EISSN