An examination of bias of facial analysis based BMI prediction models

No Thumbnail Available
Authors
Siddiqui, Hera
Rattani, Ajita
Ricanek, Karl
Hill, Twyla J.
Advisors
Issue Date
2022-06-19
Type
Conference paper
Keywords
Obesity , Error analysis , Face recognition , Psychology , Predictive models , Market research , Public healthcare
Research Projects
Organizational Units
Journal Issue
Citation
H. Siddiqui, A. Rattani, K. Ricanek and T. Hill, "An Examination of Bias of Facial Analysis based BMI Prediction Models," 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2022, pp. 2925-2934, doi: 10.1109/CVPRW56347.2022.00330.
Abstract

Obesity is one of the most important public health problems that the world is facing today. A recent trend is in the development of intervention tools that predict BMI using facial images for weight monitoring and management to combat obesity. Most of these studies used BMI annotated facial image datasets that mainly consisted of Caucasian subjects. Research on bias evaluation of face-based gender-, age-classification, and face recognition systems suggest that these technologies perform poorly for women, dark-skinned people, and older adults. The bias of facial analysis-based BMI prediction tools has not been studied until now. This paper evaluates the bias of facial-analysis-based BMI prediction models across Caucasian and African-American Males and Females. Experimental investigations on the gender, race, and BMI balanced version of the modified MORPH-II dataset suggested that the error rate in BMI prediction was least for Black Males and highest for White Females. Further, the psychology-related facial features correlated with weight suggested that as the BMI increases, the changes in the facial region are more prominent for Black Males and the least for White Females. This is the reason for the least error rate of the facial analysis-based BMI prediction tool for Black Males and highest for White Females.

Table of Contents
Description
Click on the DOI to access this article (may not be free).
Publisher
IEEE
Journal
Book Title
Series
IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)
2022
PubMed ID
DOI
ISSN
2160-7516
EISSN