Surface modification of hexagonal boron nitride nanomaterials: a review

No Thumbnail Available
Issue Date
Embargo End Date
Zheng, Zhuoyuan
Cox, McCord
Li, Bin

Zheng, Z., Cox, M. & Li, B. J Mater Sci (2018) 53: 66


Hexagonal boron nitride (h-BN) nanomaterials, such as boron nitride nanotubes, boron nitride nanofibers, and boron nitride nanosheets, are among the most promising inorganic nanomaterials in recent years. Their unique properties, including high mechanical stiffness, wide band gap, excellent thermal conductivity, and thermal stability, suggest many potential applications in various engineering fields. In particular, h-BN nanomaterials have been widely used as functional fillers to fabricate high-performance polymer nanocomposites. Like other nanomaterials, prior to their utilization in nanocomposites, surface modification of h-BNs is often necessary in order to prevent their strong tendency to aggregate, and to improve their dispersion and interfacial properties in polymer nanocomposites. However, the high chemical inertness and resistance to oxidation of h-BNs make it rather difficult to functionalize h-BNs. The methods frequently used to oxidize graphitic carbon nanomaterials are not quite successful on h-BNs. Therefore, many novel approaches have been studied to modify h-BN nanostructures. In this review, different surface modification strategies were discussed including various covalent and non-covalent surface modification strategies through wet or dry chemical routes. Meanwhile, the effects of these surface modification methods on the resulting material structures and properties were also reviewed. At last, a number of theoretical studies on the reactivity of h-BNs with different chemical agents have been conducted to explore new surface modification routes, which were also addressed in this review.

Table of Content
Click on the DOI link to access the article (may not be free).