Parametric exploration of wing-body junction flow using computational fluid dynamics

Loading...
Thumbnail Image
Authors
Hinson, Bryan C.
Issue Date
2012-12
Type
Thesis
Language
en_US
Keywords
Research Projects
Organizational Units
Journal Issue
Alternative Title
Abstract

In this thesis, wing-body junction flow is studied parametrically using computational fluid dynamics (CFD) in an attempt to understand the effects of junction flow on aircraft drag, with a focus on application to large business jet or commercial transport aircraft. A CFD methodology is validated against detailed experimental data for a junction flow. The same methodology is validated against a high Reynolds number, transonic wind tunnel test of a wing. CFD results for a wing with a leading-edge strake (an aerodynamic surface designed to reduce flow separation, thereby reducing aircraft drag) are presented and compared to experimental data, and the effects of scaling this strake are explored using CFD. The effectiveness of the strake on a swept wing is compared to the same for a straight wing. Finally, the results from this parametric study are successfully applied to sizing a leading-edge strake for a commercial transport aircraft. It is demonstrated that a systematic approach, starting with a simple validated model and building up to a realistic aircraft application, can build confidence in CFD results.

Description
Thesis (M.S.)--Wichita State University, College of Engineering, Dept. of Aerospace Engineering
Citation
Publisher
Wichita State University
License
Copyright Bryan C. Hinson, 2012. All rights reserved
Journal
Volume
Issue
PubMed ID
DOI
ISSN
EISSN