Blood glucose regulation using Type 1 Fuzzy Controller

Loading...
Thumbnail Image
Authors
Thakur, Priyanka
Advisors
Watkins, John Michael
Issue Date
2024-04-26
Type
Abstract
Keywords
Research Projects
Organizational Units
Journal Issue
Citation
Thakur, P. 2024. Blood glucose regulation using Type 1 Fuzzy Controller. -- In Proceedings: 20th Annual Symposium on Graduate Research and Scholarly Projects. Wichita, KS: Wichita State University
Abstract

Maintaining blood glucose levels (BGL) within a safe range is vital for optimal health, directly affecting energy production and cellular function. Stable levels support cognitive function, and sustained energy, as well as prevent cardiovascular and neurological issues. Understanding blood glucose control is important, especially for people diabetic patients who cannot naturally maintain stable glucose levels to stay healthy. In Kansas, where diabetes ranks as the 7th leading cause of death and approximately 1 in 9 adults have the condition, along with 11.7% diagnosed with prediabetes, blood glucose regulation is paramount. This study focuses on regulating blood glucose levels and maintaining it in the safe range of 70 to 180 mg/dL, using a closed-loop control strategy with a Mamdani Type-1 fuzzy logic controller. The effectiveness of the proposed controller was tested for three test scenarios. The first test case investigated the performance of the controller on a severe case of a hyperglycemic Type-1 diabetic patient (BGL > 180 mg/dL). The second test case examined how well the controller performed on a diabetic patient with normal blood glucose levels while being subjected to a very high meal disturbance i.e., a high carbohydrate meal. The third test case explored the functioning of the controller where a Type-1 diabetic patient experiencing hyperglycemia (BGL > 180 mg/dL) is subjected to a heightened meal disturbance. The simulation results demonstrated consistent effectiveness across all scenarios. The simulated results are presented and discussed.

Table of Contents
Description
Presented to the 20th Annual Symposium on Graduate Research and Scholarly Projects (GRASP) held at the Rhatigan Student Center, Wichita State University, April 26, 2024.
Research completed in the Department of Electrical and Computer Engineering, College of Engineering.
Publisher
Wichita State University
Journal
Book Title
Series
GRASP
v. 20
PubMed ID
DOI
ISSN
EISSN