Thermodynamic modeling of in-situ rocket propellant fabrication on Mars

Loading...
Thumbnail Image
Authors
Alam, Shah Saud
Depcik, Christopher
Burugupally, Sindhu Preetham
Hobeck, Jared
McDaniel, Ethan
Advisors
Issue Date
2022-05-20
Type
Article
Keywords
Chemistry , Thermodynamics , Space sciences , Power material
Research Projects
Organizational Units
Journal Issue
Citation
Alam, S. S., Depcik, C., Burugupally, S. P., Hobeck, J., & McDaniel, E. (2022). Thermodynamic modeling of in-situ rocket propellant fabrication on Mars. iScience, 25(5), 104323. https://doi.org/https://doi.org/10.1016/j.isci.2022.104323
Abstract

Summary In-situ resource utilization (ISRU) to refuel rockets on Mars will become critical in the future. The current effort presents a thorough feasibility analysis of a scalable, Matlab-based, integrated ISRU framework from the standpoint of the second law of thermodynamics. The ISRU model is based on existing technology that can utilize Martian resources (regolith and atmosphere) to produce rocket propellants. Model simulations show that the system analysis is theoretically consistent with a positive entropy generation, and the achievable mass flow rates of liquid methane and liquid oxygen can potentially meet the 16-month rocket refueling deadline (on Mars) as desired by the National Aeronautics and Space Administration. However, the model is sensitive to liquid oxygen storage temperatures, and lower temperatures are necessary to minimize compressor work. This proof-of-concept model can open avenues for further experimental evaluation of the system to achieve a higher technology readiness level.

Table of Contents
Description
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Click on the DOI to access the publisher's version of this article.
Publisher
Elsevier
Journal
Book Title
Series
iScience
Volume 25, No. 5
PubMed ID
DOI
ISSN
2589-0042
EISSN