Holomorphic functions on subsets of C

Loading...
Thumbnail Image
Issue Date
2013-01
Authors
Fridman, Buma L.
Ma, Daowei
Advisor
Citation

Fridman, Buma L.; Ma, Daowei. 2013. Holomorphic functions on subsets of C. -- J. Math. Soc. Japan, v. 65, no.1 (2013), 1-12.

Abstract

Let Gamma be a C-infinity curve in C containing 0; it becomes Gamma(theta) after rotation by angle theta about 0. Suppose a C-infinity function f can be extended holomorphically to a neighborhood of each element of the family {Gamma(theta)}. We prove that under some conditions on Gamma the function f is necessarily holomorphic in a neighborhood of the origin. In case Gamma is a straight segment the well known Bochnak-Siciak Theorem gives such a proof for real analyticity. We also provide several other results related to testing holomorphy property on a family of certain subsets of a domain in C.

Table of Content
Description
Click on the DOI link to access the article (may not be free).
publication.page.dc.relation.uri