Enhanced critical heat flux in pool boiling using canopy-capillary evaporator wick

Loading...
Thumbnail Image
Issue Date
2016-04-29
Authors
Nasersharifi, Yahya
Advisor
Hwang, Gisuk
Citation

Nasersharifi, Yahya. 2016. Enhanced critical heat flux in pool boiling using canopy-capillary evaporator wick. --In Proceedings: 12th Annual Symposium on Graduate Research and Scholarly Projects. Wichita, KS: Wichita State University, p. 83

Abstract

A liquid-vapor phase change in pool-boiling offers an efficient cooling mechanism, but a main challenge is the limited Critical Heat Flux (CHF), resulting from the hydrodynamic instabilities near the evaporator. To enhance this limit, the micro/nanoscale surface wetting/structural modifications have been employed, but the enhancement is only factor of 3 compared to that of the plain surface. In this study, a capillary-canopy wick with the monolayer wick is employed to separate vapor-liquid phases to assist the liquid coolant supply to the evaporator, aiming at further CHF enhancement with a minimal thermal resistance. The particle size, heights and distance of the liquid-artery wick effects are also examined using sintered-copper particles/mesh. Experimental results show a significant CHF enhancement with a reduced thermal resistance. This novel wick design provides a deep insight into an optimal design in order to improve CHF and minimize the thermal resistance for advanced thermal management systems.

Table of Content
Description
Third place winner of oral presentations. Presented to the 12th Annual Symposium on Graduate Research and Scholarly Projects (GRASP) held at the Heskett Center, Wichita State University, April 29, 2016.
Research completed at Department of Mechanical Engineering, College of Engineering
publication.page.dc.relation.uri