A novel design framework for embedded applications

No Thumbnail Available
Authors
Chidella, Kishore K.
Asaduzzaman, Abu
Almohaimeed, Abdulrahman
Advisors
Issue Date
2020-03-05
Type
Conference paper
Keywords
Design framework , Earliest deadline first technique , Microcontrollers , Optimization , Period calibration method , Real-time embedded systems
Research Projects
Organizational Units
Journal Issue
Citation
K. K. Chidella, A. Asaduzzaman and A. Almohaimeed, "A Novel Design Framework for Embedded Applications," 2019 SoutheastCon, Huntsville, AL, USA, 2019, pp. 1-6
Abstract

Real-time microcontrollers are typically constrained to different performance parameters including code size, execution time, and power consumption. These system constraints cooperate with each other in a complicated way, making it challenging to develop an optimized design methodology for real-time embedded systems. In this work, we propose a design framework by reviewing the tradeoff between code size and execution time. We applied Period Calibration Method (PCM), which converts temporal system constraints into task parameters. PCM derives temporal parameters and code size parameter of each task, and thus determines the system end-to-end timing requirements with reduced code size. The proposed methodology makes a set of design parameters to optimize the real-time embedded system output. Our design framework uses Earliest Deadline First (EDF) scheduling technique to improve system utilization by reducing dead cycles. The level of optimization is evaluated using ARM7 development suite. Dynamic Voltage Frequency Scaling (DVFS) method is applied to optimize power consumption by adjusting the frequency. The proposed design framework results are potential. The proposed optimization techniques help optimize the code size up to 21.22%, execution time up to 23.61%, and frequency up to 31.75%. This work can be extended to conduct power optimization of various microcontroller systems.

Table of Contents
Description
Click on the DOI link to access the article (may not be free).
Publisher
IEEE
Journal
Book Title
Series
IEEE SoutheastCon;2019
PubMed ID
DOI
ISSN
0734-7502
EISSN