Design, manufacturability, and sustainability analysis of an HCCI combustion engine utilizing gasoline and renewable fuels
Authors
Advisors
Issue Date
Type
Keywords
Citation
Abstract
The global quest for new forms of energy is constantly growing. Extensive research is conducted to test and analyze new blends of fuels to meet these requirements. Due to the concern about the continued availability of fossil fuels, such as crude oil and natural gas, it has become a worldwide quest to face these challenges with renewable forms of fuels and new approaches to internal combustion (IC) engine designs. The IC engine has established a robust utility in various sectors, such as transportation, agriculture, aerospace, defense, and other small power plants, to name a few. However, not all conventional IC engines have the capability to operate on multiple types of fuels. Blended fuels have proven to have slight lower power outputs with increased CO and CO2 emissions; however, yielding a lower fuel consumption is also a factor. In order to eliminate some of the major fuel issues, we have designed, developed and manufactured homologous charge compression ignition (HCCI) engine system. The benefit of this successful HCCI engine is that it can operate without a spark plug or direct injection while operating on regular gasoline. To prove this, various experiments have been conducted with different engine designs and fuels. This paper will explore the superiority of the HCCI engines over the traditional spark ignition, direct ingestion, and compression engines. These HCCI engines have successfully passed testing on different fuels such as gasoline, rubbing alcohol, and blended E10 gasoline. Because of the high engine performance and efficient burning, low particulate emissions (micro and nanoparticles) are expected from these studies.
Table of Contents
Description
Publisher
Journal
Book Title
Series
v.28
PubMed ID
ISSN
2690-3229 (online)