Distributed throughput optimal scheduling for wireless networks

Loading...
Thumbnail Image
Authors
Xia, Shuang
Advisors
Wang, Pu
Issue Date
2014-12
Type
Thesis
Keywords
Research Projects
Organizational Units
Journal Issue
Citation
Abstract

Recent advancement in distributed scheduling algorithms mainly focuses on designing CSMA-type protocols to achieve maximum network throughput in a fully distributive manner. However, it is inherently difficult for distributed scheduling algorithms to promise hard deadlines and a good performance in the presence of heavy-tailed traffic. To encounter this, there are two distributed throughput optimal scheduling to be proposed, which is timely-throughput optimal scheduling and throughput optimal scheduling with heavy-tailed traffic. The timely-throughput optimal scheduling distributed determines the optimal transmission times for network users so that the largest set of traffic rates of network users can be supported, while ensuring timely data delivery within hard deadlines. Then, the distributed throughput optimal scheduling with heavy-tailed traffic is proposed, which makes the scheduling decision based on the queue lengths raised to the ?-th power. It is demonstrated that DMWS-? is throughput optimal with respect to moment stability in the sense that if the traffic arrivals rates are within the network stability region, all network users with light-tailed traffic arrivals always have bounded queueing delay with finite mean and variance.

Table of Contents
Description
Thesis (M.S.)--Wichita State University, College of Engineering, Dept. of Electrical Engineering and Computer Science
Publisher
Wichita State University
Journal
Book Title
Series
PubMed ID
DOI
ISSN
EISSN