Isotropic covariance matrix functions on compact two-point homogeneous spaces

No Thumbnail Available
Authors
Lu, Tianshi
Ma, Chunsheng
Advisors
Issue Date
2019
Type
Article
Keywords
Bessel function , Covariance matrix function , Elliptically contoured random field , Gaussian random field , Isotropy , Jacobi polynomial , Stationarity
Research Projects
Organizational Units
Journal Issue
Citation
Lu, T. & Ma, C. J Theor Probab (2019)
Abstract

The covariance matrix function is characterized in this paper for a Gaussian or elliptically contoured vector random field that is stationary, isotropic, and mean square continuous on the compact two-point homogeneous space. Necessary and sufficient conditions are derived for a symmetric and continuous matrix function to be an isotropic covariance matrix function on all compact two-point homogeneous spaces. It is also shown that, for a symmetric and continuous matrix function with compact support, if it makes an isotropic covariance matrix function in the Euclidean space, then it makes an isotropic covariance matrix function on the sphere or the real projective space.

Table of Contents
Description
Click on the DOI link to access the article (may not be free).
Publisher
Springer
Journal
Book Title
Series
Journal of Theoretical Probability;2019
PubMed ID
DOI
ISSN
0894-9840
EISSN