Matching workloads to systems with deep reinforcement learning
Authors
Advisors
Issue Date
Type
Keywords
Citation
Abstract
Along with the evolution of computer microarchitecture over the years, the number of dies, cores, and embedded multi-die interconnect bridges has grown. Optimizing the workload running on a central processing unit (CPU) to improve the computer performance has become a challenge. Matching workloads to systems with optimal system configurations to achieve the desired system performance is an open challenge in both academic and industrial research. In this paper, we propose two reinforcement learning (RL) approaches, a deep reinforcement learning (DRL) approach and an evolutionary deep reinforcement learning (EDRL) approach, to find an optimal system configuration for a given computer workload with a system performance objective. The experimental results demonstrate that both approaches can determine the optimal system configuration with the desired performance objective. The comparison studies illustrate that the DRL approach outperforms the standard RL approaches. In the future, these DRL approaches can be leveraged in system performance auto-tuning studies.
Table of Contents
Description
Publisher
Journal
Book Title
Series
v.17 no.1