Orthogonal machining of uni-directional carbon fiber reinforced polymer composites
Authors
Advisors
Issue Date
Type
Keywords
Citation
Abstract
This research basically deals with Orthogonal Machining of Unidirectional Carbon Fiber Reinforced Polymer (FRP) Composites as secondary operations like machining is a very important process in composites manufacturing. Even though composites are manufactured to near net shape, machining operations becomes obvious to attain dimensional accuracy and surface finish for further assembly operations. The machining of FRP’s is different and more complicated to that of metals because of their anisotropic and inhomogeneous nature, along with the chip formation mode for its brittle behavior. Fibers are very abrasive in nature and cause extreme tool wear making it difficult for cutting and when combined with matrix which is comparatively weak produce fluctuating force on the tool to augment for the tool wear. It will be very helpful to study their behavior for optimizing the machining condition and to minimize the above mentioned drawbacks. This work will be basically dealing on the experimental study and numerical prediction of machining quality during orthogonal machining on various fiber orientation and cutting conditions. Orthogonal machining was performed using 3-axis miniMILL for experimental work and commercially available simulation software ABAQUS 6.9-2 for numerical study. The numerical findings are presented to supplement experimental work for predicting delamination which is very important for its service life along with some interesting observation which is discussed in this report.