Lipschitz stability in the lateral Cauchy problem for elasticity system

No Thumbnail Available
Authors
Cheng, Jin
Isakov, Victor
Yamamoto, Masahiro
Zhou, Qi
Advisors
Issue Date
2003-08-01
Type
Article
Keywords
Research Projects
Organizational Units
Journal Issue
Citation
Cheng, Jin; Isakov, Victor; Yamamoto, Masahiro; Zhou, Qi. 2003. Lipschitz stability in the lateral Cauchy problem for elasticity system. J. Math. Kyoto Univ. Volume 43, Number 3 (2003), 475-501.
Abstract

We consider the isotropic elasticity system: ρ∂2 t u − μ(Δu + ∇(∇Tu))−∇(λ∇Tu) − 3 X j=1 ∇μ · (∇uj + ∂ju)ej = 0 in Ω× (0, T) for the displacement vector u = (u1, u2, u3) depending on x ∈ Ω and t ∈ (0, T) where Ω is a bounded domain in R3 with the C2-boundary, and we assume the density ρ ∈ C2(Ω× [0, T]) and the Lam´e parameters μ, λ ∈ C3(Ω × [0, T]). We will give Lipschitz stability estimates for solutions u to the above elasticity system with the lateral boundary data u = g on ∂Ω × (0, T), ∂νu = h on Γ × (0, T) where Γ is some part of ∂Ω. Our proof is based on (1) a Carleman estimate with boundary data, (2) cut-off technique, and (3) principal diagonalization of the Lam´e system.

Table of Contents
Description
Open Access. Click on the link to access the article at the publisher's website.
Publisher
Kyoto University
Journal
Book Title
Series
Kyoto Journal of Mathematics;v.43 no.3
PubMed ID
DOI
ISSN
0023-608X
EISSN