Collagen microsphere serving as a cell carrier supports oligodendrocyte progenitor cell growth and differentiation for neurite myelination in vitro

Loading...
Thumbnail Image
Authors
Yao, Li
Phan, Francis
Li, Yongchao
Advisors
Issue Date
2013-09-09
Type
Article
Keywords
Microsphere , Oligodendrocyte , Cell delivery , Co-culture , Neural regeneration , Dorsal root ganglion
Research Projects
Organizational Units
Journal Issue
Citation
Yao, Li; Phan, Francis; Li, Yongchao. 2013. Collagen microsphere serving as a cell carrier supports oligodendrocyte progenitor cell growth and differentiation for neurite myelination in vitro. Stem Cell Research & Therapy, v.4:no.5
Abstract

Introduction: Microspheres fabricated from natural materials serve as a promising biodegradable and biocompatible carrier in a small volume for efficient cell delivery to the lesion of the injured neural tissue to generate biological functions. As the major component of extracellular matrix and due to its natural abundance within the body, collagen may be fabricated into microspheres and improve the ability of pre-seeded cells on the microspheres to encounter the hostile micro-environment in the lesion.

Methods: In this study, collagen microspheres were fabricated using the water-in-oil emulsion technique and crosslinked with 1-ethyl-3-(3-dimethylaminopropryl) carbodiimide. Oligodendrocyte progenitor cells isolated from postnatal day P1 to 2 rats were cultured and differentiated on the microspheres. The microspheres carrying the oligodendrocyte progenitor cells were co-cultured with dorsal root ganglions from 15-day-old rat embryos. The myelination formation was studied for the co-culture of oligodendrocyte progenitor cells and dorsal root ganglions.

Results: We showed that the viability of oligodendrocyte progenitor cells, B104 cells and PC12 cells grown on microspheres was not significantly different with those in cell culture plates. Oligodendrocyte progenitor cells differentiated into oligodendrocytes on collagen microspheres. The oligodendrocytes grown on microspheres extended processes that wrapped the axons of dorsal root ganglion neurons and the formation of myelin sheath was observed in the co-culture.

Conclusions: This study demonstrates the feasibility of collagen microspheres in further applications for the delivery of neural progenitor cells for neural regeneration.

Table of Contents
Description
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Publisher
Biomed Central LTD
Journal
Book Title
Series
Stem Cell Research & Therapy;v.4:no.5
PubMed ID
DOI
ISSN
1757-6512
EISSN