Improvement in crashworthiness of a vehicle for side impact occupant protection using IMPAXX and polyurethane high energy-absorbing foam materials
Authors
Advisors
Issue Date
Type
Keywords
Citation
Abstract
Side impact car crashes account for roughly 30% of all fatalities in road accidents including passenger cars and light trucks, and they tend to have a disastrous effect on the human body than all other types of car accidents due to very less crumple zone. In consideration of all this, even in the lower end and higher end vehicle segments, active safety systems are incorporated more often for side impact protection. However, there is still a large number of vehicles built without side airbags, in specific regions such as North America and emerging markets. Therefore, it is still necessary to engineer passive safety measurement by utilizing safety countermeasures, such as foams solutions to protect the occupant during side impact collisions. The present study is focused on investigation of the advantage of applying high efficient energy absorption foams for side impact protection of car occupants. First, the characteristics of high energy absorbing foam models are examined by finite element analysis and simulations of the Drop Tower Tests and the Free Motion Headform tests. After ensuring material models behavior, the design of the current B-pillar is altered by adding foam into its cavity. Subsequently, side impact test simulations of a typical passenger car with a moving deformable barrier, as per NHTSA and IIHS safety regulations, with the current and modified B-pillar are conducted. In the end, various injury criteria are evaluated by positioning a ES-2re finite element dummy model with, a three-point lap and shoulder seat belt into the driver seat. The study demonstrates that the potential for the use of high-energy absorbing foam for side impact protection.