Radial limits of capillary surfaces at corners

No Thumbnail Available
Authors
Entekhabi, Mozhgan (Nora)
Lancaster, Kirk E.
Advisors
Issue Date
2017-05
Type
Article
Keywords
Prescribed mean curvature , Radial limits
Research Projects
Organizational Units
Journal Issue
Citation
Entekhabi, Mozhgan (Nora); Lancaster, Kirk E. Radial limits of capillary surfaces at corners. Pacific Journal of Mathematics, vol. 288:no. 1:pp 55–67
Abstract

Consider a solution f is an element of C-2(Omega) of a prescribed mean curvature equation div del f/root 1+vertical bar del f vertical bar(2) = 2H (x, f) in Omega subset of R-2, where Omega is a domain whose boundary has a corner at O = (0; 0) epsilon partial derivative Omega and the angular measure of this corner is 2 alpha, for some alpha epsilon(0,pi). Suppose sup(x epsilon Omega) vertical bar f(x)vertical bar and sup(x epsilon Omega) vertical bar H (x; f(x))vertical bar are both finite. If alpha > pi/2, then the (nontangential) radial limits of f at O, namely Rf(theta) = lim(r down arrow 0) (r cos theta, r sin theta) were recently proven by the authors to exist, independent of the boundary behavior of f onand to have a specific type of behavior. Suppose partial derivative Omega 4; 2 , the contact angle gamma(.) / that the graph of f makes with one side of @ has a limit (denoted gamma(2)) at O and pi - 2 alpha < gamma 2 <2 alpha. We prove that the (nontangential) radial limits of f at O exist and the radial limits have a specific type of behavior, independent of the boundary behavior of f on the other side of partial derivative Omega. We also discuss the case 2 0; 2 and the displayed inequalities do not hold.

Table of Contents
Description
Click on the DOI link to access the article (may not be free). All articles published by MSP become open access after five years past publication (meaning on the fifth January 1st after the publication date). The Annals of Mathematics, while not published by MSP, also becomes open access after five years.
Publisher
Pacific Journal of Mathematics
Journal
Book Title
Series
Pacific Journal of Mathematics;v.288:no.1
PubMed ID
DOI
ISSN
0030-8730
EISSN