Predicting engineering student attrition risk using a probabilistic neural network and comparing results with a backpropagation neural network and logistic regression

No Thumbnail Available
Authors
Mason, Cindi R.
Twomey, Janet M.
Wright, David W.
Whitman, Lawrence E.
Advisors
Issue Date
2018-05
Type
Article
Keywords
Student retention , Probabilistic neural network , Logistic regression , Attrition
Research Projects
Organizational Units
Journal Issue
Citation
Mason, C., Twomey, J., Wright, D. et al. Res High Educ (2018) 59: 382
Abstract

As the need for engineers continues to increase, a growing focus has been placed on recruiting students into the field of engineering and retaining the students who select engineering as their field of study. As a result of this concentration on student retention, numerous studies have been conducted to identify, understand, and confirm relationships between student attributes and attrition. Methods of prediction have also been evaluated and compared. Utilizing the attributes found in previous studies to have correlation with student attrition, this study considers the results of three different prediction methods-logistic regression, a multi-layer perceptron artificial neural network, and a probabilistic neural network (PNN)-to predict engineering student retention at a case study university. The purpose of this study was to introduce the PNN to the study of engineering student retention prediction and compare the results of the PNN to other commonly used methods in this field of study. The accuracy, sensitivity, specificity and overall results for each method are reported, compared, and discussed as the major contribution of this paper.

Table of Contents
Description
Click on the DOI link to access the article (may not be free).
Publisher
Springer Nature
Journal
Book Title
Series
Research in Higher Education;v.59:no.3
PubMed ID
DOI
ISSN
0361-0365
EISSN