New insights into the dynamics of zwitterionic micelles and their hydration waters by gigahertz-to-terahertz dielectric spectroscopy

No Thumbnail Available
Authors
George, Deepu K.
Charkhesht, Ali
Hull, Olivia A.
Mishra, Archana
Capelluto, Daniel G. S.
Mitchell-Koch, Katie R.
Vinh, Nguyen Q.
Advisors
Issue Date
2016-10-20
Type
Article
Keywords
Molecular-dynamics , Protein hydration , Dodecylphosphocholine micelles , Surfactant micelles , Relaxation behavior , Collective dynamics , Neutron-scattering , Aqueous-solution , NMR , Simulations
Research Projects
Organizational Units
Journal Issue
Citation
Deepu K. George, Ali Charkhesht, Olivia A. Hull, Archana Mishra, Daniel G. S. Capelluto, Katie R. Mitchell-Koch, and Nguyen Q. Vinh. New Insights into the Dynamics of Zwitterionic Micelles and Their Hydration Waters by Gigahertz-to-Terahertz Dielectric Spectroscopy. The Journal of Physical Chemistry B 2016 120 (41), 10757-10767
Abstract

Gigahertz-to-terahertz spectroscopy of macromolecules in aqueous environments provides an important approach for identifying their global and transient molecular structures, as well as directly assessing hydrogen-bonding. We report dielectric properties of zwitterionic dodecylphosphocholine (DPC) micelles in aqueous solutions over a wide frequency range, from 50 MHz to 1.12 THz. The dielectric relaxation spectra reveal different polarization mechanisms at the molecular level, reflecting the complexity of DPC micelle water interactions. We have made a deconvolution of the spectra into different components and combined them with the effective-medium approximation to separate delicate processes of micelles in water. Our measurements demonstrate reorientational motion of the DPC surfactant head groups within the micelles, and two levels of hydration water shells, including tightly and loosely bound hydration water layers. From the dielectric strength of bulk water in DPC solutions, we found that the number of waters in hydration shells is approximately constant at 950 +/- 45 water molecules per micelle in DPC concentrations up to 400 mM, and it decreases after that. At terahertz frequencies, employing the effective-medium approximation, we estimate that each DPC micelle is surrounded by a tightly bound layer of 310 +/- 45 water molecules that behave as if they are an integral part of the micelle. Combined with molecular dynamics simulations, we determine that tightly bound waters are directly hydrogen-bonded to oxygens of DPC, while loosely bound waters reside within 4 A of micellar atoms. The dielectric response of DPC micelles-at terahertz frequencies yields, for the first time, experimental information regarding the largest scale, lowest frequency collective motions in micelles. DPC micelles are a relatively simple biologically relevant system, and this work paves the way for more insight into future studies of hydration and dynamics of biomolecular systems with gigahertz-to-terahertz spectroscopy.

Table of Contents
Description
Click on the DOI link to access the article (may not be free).
Publisher
American Chemical Society
Journal
Book Title
Series
Journal of Physical Chemistry B;v.120:no.41
PubMed ID
DOI
ISSN
1520-6106
EISSN