Intra-fraction motion prediction in MRI-guided radiation therapy using Markov processes
Authors
Advisors
Issue Date
Type
Keywords
Citation
Abstract
Internal organ motion during radiation delivery may lead to underdosing of cancer cells or overdosing of normal tissue, potentially causing treatment failure or normal-tissue toxicity. Organ motion is of particular concern in the treatment of lung and abdominal cancers, where breathing induces large tumor displacement and organ deformation. A new generation of radiotherapy devices is equipped with on-board MRI scanners to acquire a real-time movie of the patient's anatomy during radiation delivery. The goal of this research is to develop, calibrate, and test motion predictive models that employ real-time MRI images to provide the short-term trajectory of respiration-induced anatomical motion during radiation delivery. A semi-Markov model predicts transitions between the phases of a respiratory cycle, and a Markov model predicts transitions to future respiratory cycles, leading to accurate motion forecasting over longer-term horizons. The intended application for this work is real-time tracking and re-optimization of intensity-modulated radiation delivery.