Multifunctional biomimetic scaffold with hydrogel for skin tissue engineering
Authors
Advisors
Issue Date
Type
Keywords
Citation
Abstract
Chronic wounds have been a global health threat over the past few decades, requiring urgent medical and research attention. The delayed wound-healing process may be attributed to obesity, microbial infection, aging, edema, inadequate nutrition, and diabetes. Biomaterials are being developed and fabricated to accelerate the healing of chronic wounds, including nanofibrous scaffolds, hydrogels, composite scaffolds, foam and spongy scaffolds, bi-layered scaffolds, and tri-layered scaffolds. Tri-layered scaffolds are very efficient in the healing of chronic wounds as they mimic the full thickness of skin—epidermis, dermis, and hypodermis. However, there are very few studies on this class of biomaterials in the literature. This study entails the fabrication and characterization of a tri-layered scaffold for skin tissue engineering. The upper superhydrophobic and lower hydrophilic layers of the scaffolds were fabricated from recycled expanded polystyrene (Styrofoam) and monofilament fishing lines, respectively which are prominent microplastics. In addition, the surface morphology, surface chemistry, thermal degradation, and wettability of each layer of the scaffold were investigated as well as the bactericidal activity and cell proliferation of the scaffold. Test results showed that the uppermost layer of the scaffold exhibit excellent water repellency and self-cleaning capabilities due to its high water contact of