Modeling of friction-stir butt-welds and its application in automotive bumper impact performance Part 1. Thermo-mechanical weld process modeling

No Thumbnail Available
Authors
Patil, Sachin
Tay, Yi Yang
Baratzadeh, Farzad
Lankarani, Hamid M.
Advisors
Issue Date
2018-06
Type
Article
Keywords
Friction stir butt welding , Thermal modeling , Johnson-cook failure model , Sled test , Vehicle bumper assembly
Research Projects
Organizational Units
Journal Issue
Citation
Patil, S., Tay, Y.Y., Baratzadeh, F. et al. J Mech Sci Technol (2018) 32: 2569
Abstract

The demand for better structural performance in joining of components for road vehicles prompts the implementation of aluminum alloy friction stir welding technology in the automotive industry. The aim of current study is the creation of a 3-D finite element (FE) friction thermal model and stir welding (FSW) process of dissimilar aluminum alloy and for the estimation of crash worthiness performance of FSW fabricated shock absorber assembly. Thermo mechanical simulations and analysis are performed to understand the thermal behavior in the FSW weld zones. The developed models are correlated against published experimental results in terms of temperature profile of the weld zone. The developed models are then implemented for fabricating vehicle bumper parts to illustrate the performance of FSW welded components during an impact. Customary sled testing for low-speed guard necessities is performed utilizing a grating blend welded test apparatus at Wichita State University (WSU) at the National Institute for Aviation Research (NIAR). A few guard congregations are then appended to the test installation utilizing FSW and conventional Gas bend GMAW welding strategies. Numerical models are likewise created where limited component investigation is utilized to contrast the anticipated harm and the real harm maintained by both of the FSW and GMAW manufactured guards. During the research, a new FSW weld mold is created that allows for a better representation of the desired progressive crack propagation. The FSW fabricated bumper based on the Johnson-Cook failure model yields better failure prediction and is in good agreement to the test. The results from this study provide a guideline for an accurate finite element modeling of a FSW fabricated components and their application in the crashworthiness of such structural components.

Table of Contents
Description
Click on the DOI link to access the article (may not be free).
Publisher
Springer Nature
Journal
Book Title
Series
Journal of Mechanical Science and Technology;v.32:no.6
PubMed ID
DOI
ISSN
1738-494X
EISSN