Effects of moisture ingression on polymeric laminate composites and its prevention via highly robust barrier films
Authors
Advisors
Issue Date
Type
Keywords
Citation
Abstract
Three different fiber-reinforced composite test laminates were laid up using carbon-, glass-, and Kevlar-reinforced epoxy prepregs, and then four different hydrophobic barrier films were placed as the out-of-most ply (last ply) on top of the test laminates. The prepared samples were co-cured through an autoclave per recommended cure cycles. These hydrophobic barrier films included polyether ether ketone or PEEK (12.7- and 25.4-mu m thicknesses), polytetrafluoroethylene or Teflon (25.4 mu m), and polyvinyl fluoride (PVF) or Tedlar (25.4 mu m). Tedlar films have been the only source used for moisture prevention in Aerospace composites, so the purpose of the present study was to determine other alternatives and their moisture ingression prevention characteristics. The tape adhesion tests conducted on the barrier films of the composite panels indicated that PEEK and Tedlar films were well bonded on the composite surfaces, while Teflon films failed the tape adhesion tests. The laminate composites that were co-bonded with barrier films were immersed in water up to 29 days, and then 3-point bend tests were conducted on each sample before and after immersion. Test results show that 25.4-mu m thick PEEK and Tedlar films on the carbon, glass, and Kevlar laminate composites provided similar mechanical properties. Also, the laminates incorporated with barrier films exhibited significantly higher mechanical properties when compared to the same laminates without any barrier films. This study indicated that these barrier films considerably reduced moisture ingression into the laminate composite structures, which may be useful for applications in composite aircraft and wind turbines.
Table of Contents
Description
Publisher
Journal
Book Title
Series
PubMed ID
DOI
ISSN
WOS:000340420900039