Bionano donor-acceptor hybrids of porphyrin, ssDNA, and semiconductive single-wall carbon nanotubes for electron transfer via porphyrin excitation

Loading...
Thumbnail Image
Authors
D'Souza, Francis
Das, Sushanta K.
Zandler, Melvin E.
Sandanayaka, Atula S. D.
Ito, Osamu
Advisors
Issue Date
2011-12
Type
Article
Keywords
Research Projects
Organizational Units
Journal Issue
Citation
D'Souza F., Das S.K., Zandler M.E., Sandanayaka A.S.D., and Ito O. 2011. "Bionano donor-acceptor hybrids of porphyrin, ssDNA, and semiconductive single-wall carbon nanotubes for electron transfer via porphyrin excitation". Journal of the American Chemical Society. 133 (49): 19922-19930.
Abstract

Photoinduced electron transfer in self-assemblies of porphyrins ion-paired with ssDNA wrapped around single-wall carbon nanotubes (SWCNTs) has been reported. To accomplish the three-component hybrids, two kinds of diameter-sorted semiconducting SWCNT(n,m)s of different diameter ((n,m) = (6,5) and (7,6)) and free-base or zinc porphyrin bearing peripheral positive charges ((TMPyP(+))M (tetrakis(4-N-methylpyridyl)porphyrin); M = Zn and H(2)) serving as light-absorbing photoactive materials are utilized. The donor-acceptor hybrids are held by ion-pairing between the negatively charged phosphate groups of ssDNA on the surface of the SWCNT and the positively charged at the ring periphery porphyrin macrocycle. The newly assembled bionano donor-acceptor hybrids have been characterized by transmission electron microscopy (TEM) and spectroscopic methods. Photoinduced electron transfer from the excited singlet porphyrin to the SWCNTs directly and/or via ssDNA as an electron mediator has been established by performing systematic studies involving the steady-state and time-resolved emission as well as the transient absorption studies. Higher charge-separation efficiency has been successfully demonstrated by the selection of the appropriate semiconductive SWCNTs with the right band gap, in addition to the aid of ssDNA as the electron mediator.

Table of Contents
Description
Click on the DOI link below to access the article (may not be free).
Publisher
American Chemical Society
Journal
Book Title
Series
Journal of the American Chemical Society;2011:, v.133, no.49
PubMed ID
DOI
ISSN
0002-7863
1520-5126
EISSN