Differential progression of neonatal diethylstilbestrol-induced disruption of the hamster testis and seminal vesicle
Authors
Advisors
Issue Date
Type
Keywords
Citation
Abstract
The synthetic estrogen diethylstilbestrol (DES) is now recognized as the prototypical endocrine disruptor. Using a hamster experimental system, we performed a detailed temporal assessment of how neonatal DES-induced disruption progresses in the testis compared to the seminal vesicle. Both morphological and Western blot analyses confirmed that neonatal DES exposure alters androgen responsiveness in the male hamster reproductive tract. We also determined that the disruption phenomenon in the male hamster is manifest much earlier in the seminal vesicle than in the testis and that testis disruption often occurs differently between the pair of organs in a given animal. In the neonatally DES-exposed seminal vesicle, histopathological effects included: (1) general atrophy, (2) lack of exocrine products, (3) epithelial dysplasia, (4) altered organization of stromal cells and extracellular matrix, and (5) striking infiltration with polymorphonuclear leukocytes. Also, the morphological disruption phenomenon in the seminal vesicle was accompanied by a range of up-regulation and down-regulation responses in the whole organ levels of various proteins.