Speed kills? Migrating sea lamprey increase speed when exposed to an antipredator cue but make worse short-term decisions

Loading...
Thumbnail Image
Authors
Feder, M.E.
Wisenden, B.D.
Luhring, Thomas M.
Wagner, C.M.
Advisors
Issue Date
2024
Type
Article
Keywords
Alarm cue , Behavior , Conservation , Habituation , Management , Speed-accuracy tradeoff
Research Projects
Organizational Units
Journal Issue
Citation
Feder, M.E., Wisenden, B.D., Luhring, T.M., Wagner, C.M. Speed kills? Migrating sea lamprey increase speed when exposed to an antipredator cue but make worse short-term decisions. (2024). Journal of Great Lakes Research, art. no. 102398. DOI: 10.1016/j.jglr.2024.102398
Abstract

There is growing evidence that a natural repellent, injury-released alarm cues, can be used to guide the movements of invasive fishes to achieve management goals. However, because this process involves perception, downstream cognitive processing of sensory information affects decisions regarding expression of antipredator behavior. Response habituation, wherein repeated or continuous exposure to a cue reduces behavioral response rates, is an oft-cited challenge for use of predation cues as conservation tools. Habituation may be delayed or prevented by altering the concentration and/or the temporal pattern of odor release (pulses of odor vs continuous application). We examined the effects of varying odor concentration and exposure regime (continuous vs pulsed) on behavioral response of adult sea lamprey (Petromyzon marinus) to conspecific alarm cue in a two-choice maze. We found that exposure to alarm cue induced more frequent and rapid upstream movement, regardless of exposure regime. There was also clear evidence of a speed-accuracy tradeoff, wherein sea lamprey that took longer to arrive at the bifurcation in the maze were more likely to avoid the arm activated with alarm cue. We could not ascertain the value of increasing concentration or pulsing the alarm cue on preventing habituation, as habituation did not occur. We hypothesize dishabituation to the alarm cue occurred immediately prior to testing due to handling that may have inadvertently simulated an unsuccessful predator attack. If true, incorporating dishabituating stimuli may prove a useful means to maintain the efficacy of alarm cue when applied as a repellent to manipulate the movements of sea lamprey. © 2024 The Author(s)

Table of Contents
Description
© 2024 The Author(s). Published by Elsevier B.V. on behalf of International Association for Great Lakes Research. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Publisher
International Association of Great Lakes Research
Journal
Journal of Great Lakes Research
Book Title
Series
PubMed ID
ISSN
0380-1330
EISSN